Sparsity Regret Bounds for Individual Sequences in Online Linear Regression
نویسنده
چکیده
We consider the problem of online linear regression on arbitrary deterministic sequences when the ambient dimension d can be much larger than the number of time rounds T . We introduce the notion of sparsity regret bound, which is a deterministic online counterpart of recent risk bounds derived in the stochastic setting under a sparsity scenario. We prove such regret bounds for an online-learning algorithm called SeqSEW and based on exponential weighting and data-driven truncation. In a second part we apply a parameter-free version of this algorithm to the stochastic setting (regression model with random design). This yields risk bounds of the same flavor as in Dalalyan and Tsybakov (2011) but which solve two questions left open therein. In particular our risk bounds are adaptive (up to a logarithmic factor) to the unknown variance of the noise if the latter is Gaussian. We also address the regression model with fixed design.
منابع مشابه
Sparsity, variance and curvature in multi-armed bandits
In (online) learning theory the concepts of sparsity, variance and curvature are well-understood and are routinely used to obtain refined regret and generalization bounds. In this paper we further our understanding of these concepts in the more challenging limited feedback scenario. We consider the adversarial multi-armed bandit and linear bandit settings and solve several open problems pertain...
متن کاملAdaptive and Optimal Online Linear Regression on ℓ1-Balls
We consider the problem of online linear regression on individual sequences. The goal in this paper is for the forecaster to output sequential predictions which are, after T time rounds, almost as good as the ones output by the best linear predictor in a given l-ball in R. We consider both the cases where the dimension d is small and large relative to the time horizon T . We first present regre...
متن کاملOnline Linear Optimization with Sparsity Constraints
We study the problem of online linear optimization with sparsity constraints in the 1 semi-bandit setting. It can be seen as a marriage between two well-known problems: 2 the online linear optimization problem and the combinatorial bandit problem. For 3 this problem, we provide two algorithms which are efficient and achieve sublinear 4 regret bounds. Moreover, we extend our results to two gener...
متن کاملOnline Linear Optimization with Sparsity Constraints
We study the problem of online linear optimization with sparsity constraints in the 1 semi-bandit setting. It can be seen as a marriage between two well-known problems: 2 the online linear optimization problem and the combinatorial bandit problem. For 3 this problem, we provide two algorithms which are efficient and achieve sublinear 4 regret bounds. Moreover, we extend our results to two gener...
متن کاملOnline Linear Regression using Burg Entropy
We consider the problem of online prediction with a linear model. In contrast to existing work in online regression, which regularizes based on squared loss or KL-divergence, we regularize using divergences arising from the Burg entropy. We demonstrate regret bounds for our resulting online gradient-descent algorithm; to our knowledge, these are the first online bounds involving Burg entropy. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 14 شماره
صفحات -
تاریخ انتشار 2011